New Directions for IPF Treatments:

Understanding the Basis for Current Clinical Trials

Andrew M. Tager, M.D.

Interstitial Lung Disease Program Pulmonary and Critical Care Unit Massachusetts General Hospital Harvard Medical School

- Advances in understanding what drives IPF progression
- Clinical trials of new therapies based on new understanding

What is Fibrosis?

Fibrosis = Scarring

Normal tissue layers

Thin Flexible

Scarred tissue layers

Thick Stiff

"Fibrosis Across Organs"

Many different diseases are characterized by fibrosis Scarring is a common disease process that can affect any organ

Lung
Idiopathic Pulmonary Fibrosis Skin - Scleroderma Liver
Cirrhosis Kidney

End Stage Renal Disease

What Causes Fibrosis: Genes or Environment?

Gene – Environment Interactions

Canes

Genetic Causes of Pulmonary Fibrosis

- Familial Interstitial Pneumonia
 - Families with \geq 2 cases among first-degree family members

- Due to gene mutations that can cause fibrosis by themselves
 - Telomerase mutations
 - Surfactant protein C gene mutations

Environmental Exposures and Risk of IPF

Exposure	OR (95% CI)	Population Attributable Risk, %
Smoking	1.58 (1.3, 2.0)	49
Agriculture	1.65 (1.2, 2.3)	21
Livestock	2.17 (1.3, 3.7)	4.1
Wood Dust	1.94 (1.3, 2.8)	5.0
Metal Dust	2.44 (1.7, 3.4)	3.4
Stone/sand/silica	1.97 (1.1, 3.6)	3.5

How Do Environmental Exposures Trigger Pulmonary Fibrosis?

- Chronic Inflammation = responses of the body's immune cells / antibodies to exposures they recognize as foreign
- Treatment based on this theory: anti-inflammatory

Increased Risk of Death with Anti-Inflammatory Therapy in PANTHER-IPF Trial

How Do Environmental Exposures Trigger Pulmonary Fibrosis?

- Current Theory: Chronic Injury fibrosis
- Chronic injury = repetitive toxic exposures causing damage to lung tissues
- Treatment strategies based on this theory
 - Prevent injury
 - Improve "repair responses" of the lung

Focusing on the Lung's Repair Responses

Targeting Fibroblast Accumulation and Matrix Deposition: Pirfenidone

CAPACITY trials

- Two concurrent randomized, double-blind, placebo-controlled trials
- Primary outcome measure: Change in % Predicted FVC at Week 72

	CAPACITY 1 (n = 344)		CAPACITY 2 (n = 348)			
Week	<u>I S Mean C</u> PFD	hange Placebo	Rank	LS Mean C PFD	hange Placebo	Rank
72	-6.49	-7.23	0.501	- 6.49	-9.55	0.001

ASCEND Trial of Pirfenidone

Sponsor	InterMune
Mechanisms	Thought to inhibit TGF- β actions among other mechanisms
Trial Design	Phase III, randomized, double blind, placebo controlled
Inclusion Criteria	FVC 50 to 90% and DL _{CO} 30 to 90%
Primary Endpoint	Change in FVC % predicted at week 52
Treatment Arms	Pirfenidone - vs - Placebo
Treatment Duration	52 weeks
Result	Recruitment ongoing

TOMORROW Trial of BIBF 1120

Phase III Trial of BIBF 1120

Sponsor	Boehringer Ingelheim
Mechanisms	Inhibits FGF, PDGF and VEGF
Trial Design	Phase III, randomized, double blind, placebo-controlled
Inclusion Criteria	$FVC \ge 50$ %, DL_{CO} 30 to 79%
Primary Endpoint	annual rate of decline in FVC
Treatment Arms	BIBF 1120 (300 mg/d) - vs - Placebo
Treatment Duration	52 weeks
Result	Recruitment completed

Targeting CTGF to Inhibit Fibroblast Accumulation and Matrix Deposition: Phase II Trial of FG-3019

Sponsor	FibroGen
Mechanisms	Inhibits CTGF
Trial Design	Phase II, single arm, open label
Inclusion Criteria	IPF Duration < 5 years, Progression over last 3 - 12
Primary Endpoint	Safety and tolerability of FG-3019
	Extent of fibrosis, lung function, dyspnea (2° endpoints)
Treatment Arms	FG-3019 - vs - Placebo
Treatment Duration	45 weeks
Result	Recruitment completed

Evidence of <u>Improvement</u> in Some IPF patients in Phase II Trial of FG-3019

		24 weeks	48 weeks		
Subjects	Total	Δ FVC % Predicted > 0	Total	Δ FVC % Predicted > 0	
ALL	44	14 (31.8%)	21	5 (23.8%)	
BL FVC % Predicted > 55%	34	13 (38.2%)	17	5 (29.4%)	

Inhibiting Fibroblast Accumulation and Matrix Deposition with Carbon Monoxide

Sponsor	Brigham and Women's Hospital
Mechanisms	Inhibits fibroblast accumulation and matrix deposition
Trial Design	Phase II, randomized, double blind, placebo-controlled
Inclusion Criteria	$FVC \ge 50\%$ predicted
Primary Endpoint	MMP7 levels
	Effects on FVC, DLCO, 6MWD and SGRQ (2° endpoints)
Treatment Arms	Inhaled Carbon Monoxide (CO) - vs - placebo
Treatment Duration	12 weeks
Result	Recruitment ongoing

Targeting TGF-β to Inhibit Fibroblast Accumulation and Matrix Deposition: Anti-β6 Integrin Antibody (STX-100)

Sponsor	Stromedix
Mechanisms	Inhibit TGF-β activation
Trial Design	Phase II, randomized, double blind, placebo-controlled
Inclusion Criteria	FVC \ge 50 %, DL _{CO} \ge 35%, Room air O ₂ saturation \ge 90%
Primary Endpoint	Incidence and severity of adverse events % change in lung function (secondary endpoint)
Treatment Arms	STX-100 - vs - Placebo
Treatment Duration	8 weeks
Result	Recruitment ongoing

- Recent advances in understanding IPF progression
- Identification of new drug targets of clinical trials
- Optimism for development of effective treatments for IPF