A Decade of IPF Research What Have We Learned?

Joseph D Zibrak MD Director, Interstitial Lung Disease Center Beth Israel Deaconess Medical Center Harvard Medical School

The Curious Case of Benjamin Button

How did I get involved?

- 1999 Saw RN for the first time
 - Driver of a cleanup truck on the Big Dig
 - Rode Harley's
 - Optimistic, engaging personality
 - Had tried conventional therapy with no success
- Read Ziesche's article in NEJM
 - Enquired about availability of gamma interferon
 - Compelled by RN to apply to be involved in study
 - RN got gamma off label lung function improved, lived for 4 more years, rode Rte 66 from Kingman, AZ to LA with O2 welded to his bike

When did the story start?

- 1975 Liebow
 - Idiopathic interstitial pneumonias
 - UIP, GIP, BOOP, DIP
- 1991 Raghu publishes the first paper reporting successful treatment of IPF (27 patients)

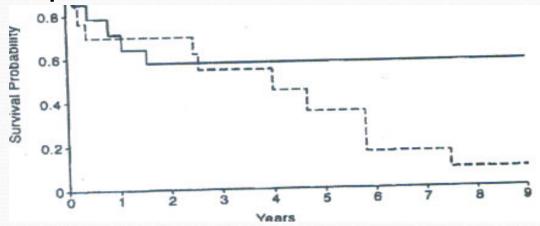
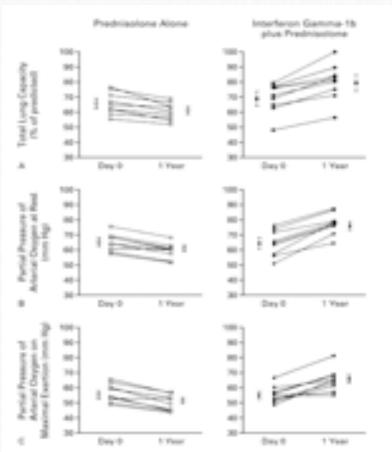
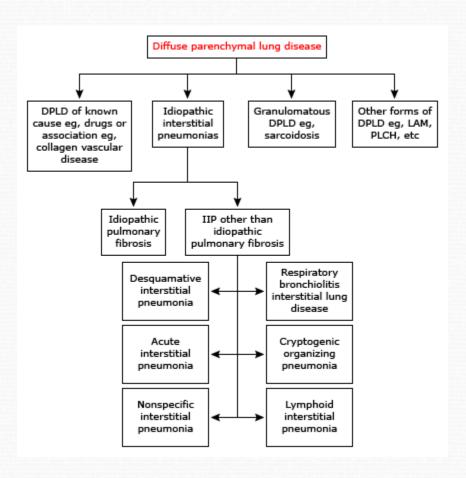



Fig. 1. Survival curves of patients in Group 1 (prednisone plus placebo) and Group 2 (prednisone plus azathioprine). Age adjusted analysis shows a significant survival advantage in the patients treated with combined prednisone plus azathioprine (p = 0.02, see text). Solid line = prednisone + azathioprine; dotted line = prednisone + placebo.

Gamma Interferon - 1999

In a preliminary study, 12 months of treatment with interferon gamma-1b plus prednisolone was associated with substantial improvements in the condition of patients with idiopathic pulmonary fibrosis who had had no response to glucocorticoids alone.

A Preliminary Study of Long-Term Treatment with Interferon Gamma-1b and Low-Dose Prednisolone in Patients with Idiopathic Pulmonary Fibrosis Ziesche R, Hofbauer E, Wittmann K, Petkov V, Block UH
N Engl J Med 341:1264, October 21, 1999 Original Article


Current Therapy for PF

- "No data exist that adequately document that any of the current treatment approaches improves survival or the quality of life for patients with IPF
- The committee suggests that therapy is not indicated for all patients with IPF. If therapy is recommended to a patient, it should be started at the first identification of clinical or physiological evidence of impairment or documentation of decline in lung function"

International consensus statement on idiopathic pulmonary fibrosis

Eur Respir J 2001; 17: 163-167

ATS/ERS Consensus Conference on Classification

What is a Clinical Trial

- Trial of a new agent or device compared to either placebo or standard therapy
- At the onset, investigators are uncertain if therapy is better than no therapy or the conventional therapy
- Best studies are randomized, double blind
 - Neither investigator or patient knows who is in "control" group
 - Sufficient patients are entered to allow for a statistically significant result

Clinical Trials - 2

- All clinical trials are reviewed by a "Human Subjects" committee or IRB
 - Composed of doctors, lawyers, religious leaders, lay persons
 - Cannot begin study procedures until approved
- Clinical trials are monitored by:
 - Sponsoring institutions
 - Pharmaceutical company
 - Federal regulators
 - Investigators are subject to regular and unannounced review
 - Are criminally libel for misconduct

Gamma Interferon

- Multiple large studies a first
 - Biologic plausibility TGF-beta
- Initial optimism in select populations
 - FVC > 50%
 - DLCO > 35%
- Very large trial (INSPIRE)
 - No clear survival advantage or alteration in rate of decline of lung function

CAPACITY - Pirfenidone

- CAPACITY 2 demonstrated a statistically significant treatment effect on progression free suvival and rate of decline in lung function
- CAPACITY 1 did not
- FDA concerned about the disparity in outcomes between CAPACITY 1 and 2
- FDA did not consider the Japanese Study in their deliberations because they did not have access to primary data
- FDA asked for a tie breaker

Phase III Clinical Trials

- Pirfenidone ASCEND
 - Inclusion Criteria
 - Age 40–80 inclusive
 - Confident diagnosis of IPF by biopsy or CT
 - FVC ≥ 50 and ≤90 % predicted
 - DLCO >30 and <90% predicted
 - Symptoms for > 12 mos
 - Duration of IPF diagnosis at least 6 mos and no greater than 48 mos prior to enrollment
 - No evidence of any connective tissue disease
 - No history of asthma or COPD

Phase III Clinical Trials

- PANTHER
 - NIH Multicenter Trial
 - Prednisone, Azathioprine, N-Acetyl Cysteine
 - Three Arms
 - Over 300 patients enrolled
 - Inclusions
 - Confident diagnosis of IPF CT/Lung Biopsy within 48 months of enrollment
 - Central adjudication
 - Age 35–85
 - FVC >50%, DLCO >30%
 - Enormously valuable multidimensional database

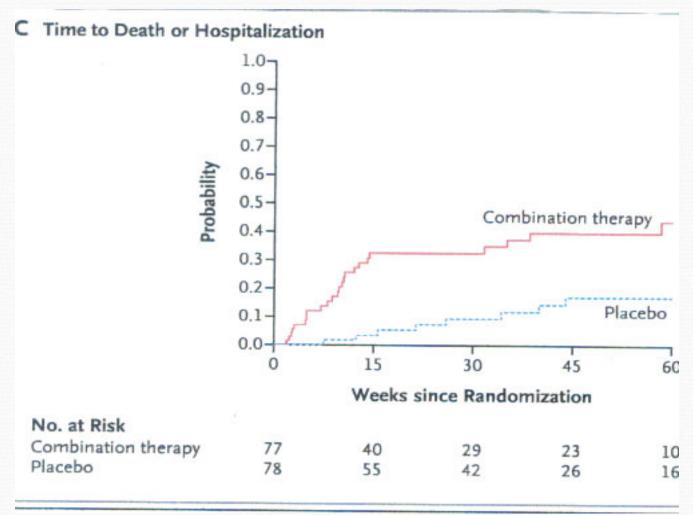

Panther Results

Table 2. Safety End Points.*

End Point	Combination Therapy (N=77)	Placebo (N=78)	Hazard Ratio	P Value
Death — no. (%)				
From any cause	8 (10)	1 (1)		0.01
From respiratory causes	7 (9)	1 (1)		0.02
Hospitalization for any cause — no. (%)	23 (30)	7 (9)		<0.001
Acute exacerbation — no. (%)	5 (6)	0		0.03
Serious adverse event — no. (%)	24 (31)	8 (10)		0.001
Based on Kaplan–Meier estimate at 60 wk — % (95% CI)				
Death from any cause	19.8 (9.9-37.2)	2.0 (0.3-13.6)	9.26 (1.16-74.1)	0.01
Death from any cause or hospitalization	43.6 (30.7-59.0)	16.9 (8.7-31.5)	3.74 (1.68-8.34)	< 0.001
Death from any cause or ≥10% decline in FVC	36.3 (23.7-53.0)	32.4 (19.7-50.3)	1.46 (0.70-3.05)	0.30

FVC denotes forced vital capacity.

Panther Results

Why is this so hard

- Oncology cancer
 - Unregulated cell growth
 - Numerous successes with combination therapy
- Cardiology atherosclerosis
 - Obstruction of arteries with plaque
 - Statins/Antiplatelet Agents/Stents
- Infectious Diseases retroviruses (HIV)
 - Immunodeficiency states
 - HAART Therapy
 - Vaccine
- Pulmonary IPF
 - Scarring, senescence
 - Reverse the Aging Process!

Clinical trials take a long time

- Design
- Approval of protocol
 - FDA
 - IRB
- Recruitment
- Study period
- Analysis
- Approval
- Production of product

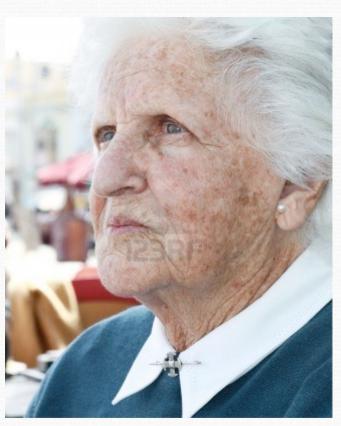
Surface Area of Lung

Possible Etiology

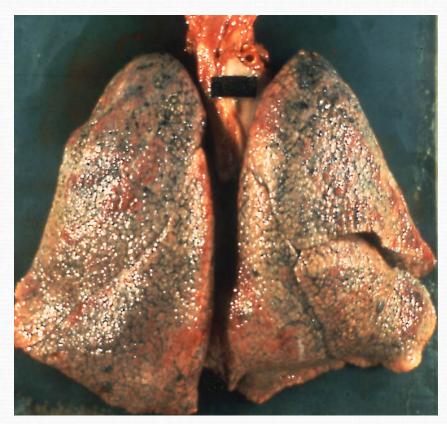
- Largest interface with the environment
- Bombarded with toxins over a lifetime
- Constantly being injured and requiring repair
 - Genetic factors determine repair capabilities

Possible Etiologic Factors

- GERD
- Short telomere syndrome
- Abnormal intracellular protein accumulation
 - Endoplasmic Reticulum Stress
- Imbalance between repair and scarring cytokines
- Greater frequency in older people
- More aggressive in certain populations
 - Air pollution?
 - Cigarette Smoke
 - Industrial Toxins


Loss of lung function

- Every person loses lung function over time
- We report "lung age" on PFT's
- 120 year (pulmonary) limit on longevity

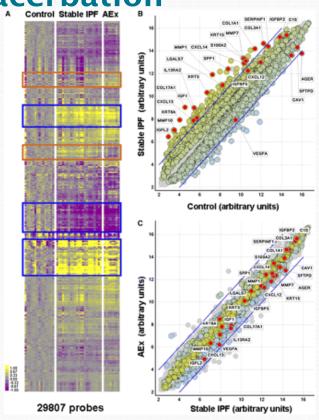


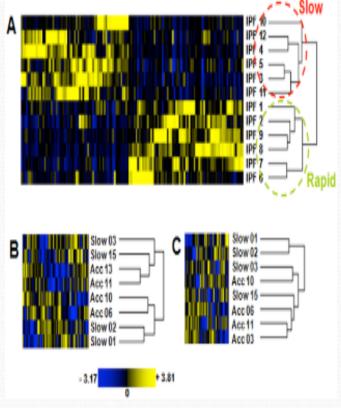
Living in a dangerous environment?

Scarring/Sun Damage

IPF Lungs

Can we re-set the ageing process?


Young Benjamin Button Old Benjamin Button



Genetic heat mapping - clues to effective therapies?

Control vs IPF vs IPF Exacerbation

Rapid vs Slow Progressors

Advances

- We know many agents that do not work
- We have identified disease markers and genes that put people at risk
- GERD was under recognized and may play a role in perpetuating the disease
- We have studied 1000's of people in clinical studies
- CT Scanning has simplified diagnosis
- The scientific understanding of the disease has led to the development of many exciting new agents that in the early testing stages

What do we do - 2012

- Avoid potentially harmful agents
- Protect the lung from injury
 - Treat GERD aggressively
 - Be vigilant about infection
 - Consider using an anti-oxidant (NAC)
 - Avoid poor air quality, toxic exposures
- Maintain optimal oxygenation
- Continue to exercise
- Early evaluation for transplantation
- Search out well designed clinical trials

Conclusions

- IPF is not going to be licked with a single agent!
- Multidrug approach
 - Just like the other complicated diseases I presented
- It isn't going to happen quickly
 - We need approved agents to proceed
- We need your help and participation
 - More shots on goal more likely to win the game

Boston IPF Collaborative

- Access to trials of the most promising therapies
 - Participation in ASCEND
 - Low Dose CO in IPF is an exciting therapy
 - STX 100 and QAX576 in Phase II trials promise to expand our knowledge of the pathophysiology of IPF
 - Velcade/Roflumilast
 - Lung Transplantation
- Support Group for IPF patients
- A commitment to improving quality of life and survival for all our IPF patients

