Disease Monitoring of Pulmonary Fibrosis

Sydney Montesi, MD

Massachusetts General Hospital

Overview

- Current methods of monitoring disease
 - Pulmonary function testing
 - Computed tomography
- Investigational methods of monitoring disease

Pulmonary Function Tests

- A mainstay of ILD evaluation
- Used in diagnosis (restriction)
- Used in monitoring
 - Changes in forced vital capacity (FVC) and DLCO as markers of disease progression
- Used in clinical trials

– Change in forced vital capacity over 52 weeks

PFTs and ILD Physiology

- Pulmonary Mechanics
 - Lungs have \downarrow compliance

PFTs show restrictive defect

- Lung volumes
 - \downarrow TLC
 - $\downarrow RV$
- Spirometry
 - $\downarrow VC$
 - FEV₁/FVC normal or even increased

PFTs and ILD Natural History

Figure 2. Decline in FVC in idiopathic pulmonary fibrosis (IPF). Shown are the mean rates of FVC found in the placebo arms of clinical trials in patient with IPF. The FVC declines approximately 150 to 200 ml/yr in patients with IPF. Data from the placebo arms of the following clinical trials: ¹Pirfenidone (27), ²Imatinib (29), ³Interferon γ -1b (IFN γ) (25), ⁴Pirfenidone (30), ⁵Etanercept (26), ⁶Bosentan (24), ⁷N-Acetylcysteine (NAC) (28).

Ley et al, Am J Respir Crit Care Med, 2011; 183: 431-440

Oxime	try	O2 Delivery	O2 Sat	Pulse
Normal room air values		L/Min	95 to 98	
			%	
Rest	(Room Air)	None	95.0	97
Rest				
Exercise	e		88.0	107

Spirometry at E	Spirometry at BTPS		Pre Bro	onchodila	tor			
		Actual	Predicted	% Pred	CIR	ange		
FEV ₁	L	2.47	3.49	71	2.65	4.33	Α	n
FVC	L	3.01	4.48	67	3.36	5.60	Α	n
FEV1 / FVC	%	82	78	105	70		N	
FEF25-75	L/s	2.76	3.27	84	1.60	4.94		
PEFR	L/s	12.98	8.22	158	4.33	12.11		
FIVC	L	2.85	4.48	64	3.36	5.60		
Plethysmograp	hy	ATS 🗸	ATS 🗸 Pre Bronchodilator					
		Actual	Predicted	% Pred	CIR	ange		
TLC	L	4.74	6.74	70	5.13	8.35	Α	n
FRC	L	2.12	3.55	60	2.09	5.01	N	
ERV	L	0.47	1.29	36				
RV	L	1.65	2.26	73	1.50	3.02	N	
RV/TLC	%	35	34	103	23	45	N	
VC	L	3.09	4.48	69	3.36	5.60		
Resistance								
Raw	cmH2O/L/s	2.59	< = 2.80				N	
sGaw	L/s/cmH2O	0.21	> = 0.12				Ν	
Diffusion	Diffusion		ATS 🛞 Pre Bronchodilator					
		Actual Predicted % Pred		CI Range				
DLCO	mL/min/mmHg	14.48	27.06	54	19.07	35.05		
DLCO [Hb]	mL/min/mmHg	14.10	27.06	52	19.07	35.05	Α	m
НЬ	g/dl	15.6	14.6		12.0	16.0		
VA [BTPS]	L	3.91	6.78	58	5.17	8.39		
	mL/min/mmHg/L	3.61	4.17	87	2.97	5.37	N	

It's change over time that important

Parameter	Units	Today	History of Previous		
		18-Sep-20	05-Mar-20	30-Dec-99	
FVC	L	2.39	3.77		
FEV_1	L	1.63	3.20		
FEV_1 / FVC	%	6 8	85		
FET	sec	5.93	8.10		
TLC	L		5.50		
FRC	L		3.77		
RV	L		1.62		
VC	L		3.88		
DLCO [Hb]	mL/min/mmHg	8.28	17.69		

PFTs and Advantages

- Easy to perform
- Reproducible and standardized (can have performed at different locations and still be comparable)
- Low cost
- Changes have clinical significance
- Primary outcome of clinical trials

Nintedanib and FVC

Richeldi L et al, *N Engl J Med* 2014; 370:2071-2082

Pirfenidone and FVC

King TE et al, *N Engl J Med* 2014; 370:2083-2092

PFTs and Limitations

Difficult to predict
subsequent progression
based on one
measurement

Ley et al, Am J Respir Crit Care Med, 2011; 183: 431-440

PFTs and Change over Time

Ley et al, Am J Respir Crit Care Med, 2011; 183: 431-440

Computed Tomography (CT)

- Mainstay of ILD diagnosis
- Used to inform as to ILD pattern type
- Presence of certain findings (UIP pattern) has prognostic significance
- Not used as an outcome measure in clinical trials

IPF Diagnostic Approach

CT Pattern Examples

CT Patterns and Outcomes

Putman, Am J Respir Crit Care Med, 2019; 200:175-183

Need for a disease activity measure

- Current methods of monitoring (CT and PFTs) measure the end result of scarring and inform as to disease progression <u>over time</u>
 - Do not inform as to disease activity at any one measure
- A measure of disease activity in IPF would:
 - Improve clinical care by enabling treatment plans to be tailored for an individual and enhancing prognostication
 - Advance clinical trials by enabling cohort enrichment strategies and enrolling of patients most likely to have a benefit from treatment

Type I Collagen Imaging

- Accumulation of type I collagen is the hallmark of fibrosis
- Current imaging approaches (e.g. CT) only can visualize the end result of collagen deposition
- 68Ga-CBP8 is a PET probe that binds type I collagen with high specificity (Désogere et al, *Sci Trans Med.* 2017)
- 68Ga-CBP8 can detect treatment response to anti-fibrotic therapy in a mouse model of pulmonary fibrosis (Désogere et al, Sci Trans Med. 2017)
- Pre-clinical data suggest that ⁶⁸Ga-CBP8 preferentially binds freshly synthesized as opposed to mature collagen and thus may be ideal imaging marker of disease activity

⁶⁸Ga-CBP8 Detects Increased Collagen in IPF patients and *Active Disease*

Montesi et al, Am J Respir Crit Care Med. 2019

Future Directions

