# Genetics and the Development of Pulmonary Fibrosis

Gary "Matt" Hunninghake, MD, MPH Associate Professor of Medicine, Harvard Medical School Director of the Interstitial Lung Disease Program Division of Pulmonary and Critical Care Medicine Brigham and Women's Hospital, Harvard Medical School



Project ECHO Boston, MA July 19th, 2023



# Disclosures

• Relevant financial relationships with a commercial interest:

I have performed consulting work for Boehringer-Ingelheim and the Gerson Lehrman Group.







IPF is a heritable disease

 Heritability of IPF – estimated 32% (based on common and rare variants) Familial Pulmonary Fibrosis

- Estimates of genetic risk in families
  - Rare variants explain ~15-23% of risk
  - Estimates from whole genome sequencing in 569 FPF kindreds













•Common genetic variation explains a substantial portion of the disease

- ~23-25 common variants associated with IPF
- Some debate (estimates from 8-18% in the general population)



•Common genetic variation explains a substantial portion of the disease

- ~23-25 common variants associated with IPF
- Some debate (estimates from 8-18% in the general population)



Thorax. 2022; 77(8):829-33. Lancet Respir Med. 2017; 5(11): 869-880.

| Common variants associated with IPF | Gene Function                | Gene   | Risk Allele(s)                      |
|-------------------------------------|------------------------------|--------|-------------------------------------|
|                                     | Airway mucin production      | MUC5B  | rs35705950                          |
|                                     |                              | MUC2   | rs7934606                           |
|                                     | Cell-cell adhesion           | DSP    | rs2076295                           |
|                                     |                              | DPP9   | rs12610495                          |
|                                     | Toll-like receptor signaling | TOLLIP | rs111521887, rs5743894<br>rs2743890 |
|                                     |                              | TLR3   | rs3775291 (L412F)                   |
|                                     |                              | ATP11A | rs1278769                           |
|                                     | Cytokine/growth factor       | ILIRN  | VNTR*2 haplotype block              |
|                                     | signaling                    | IL8    | rs4073, rs2227307                   |
|                                     |                              | IL4    | rs2243250                           |
|                                     |                              | TGFB1  | rs1800470                           |
|                                     | Telomere maintenance         | TERT   | rs2736100                           |
|                                     |                              | OBFC1  | rs11191865                          |
|                                     | Cell cycle regulation        | KIF15  | rs78238620                          |
|                                     |                              | MAD1L1 | rs12699415                          |
|                                     |                              | CDKN1A | rs2395655                           |
|                                     |                              | TP53   | rs12951053, rs12602273              |

J Inflamm Res. 2020; 13: 1305-1318.

| Rare variants associated with IPF | Gene Function                   | Gene   | Mutation(s)                   |
|-----------------------------------|---------------------------------|--------|-------------------------------|
|                                   | Surfactant production/secretion | SFTPA1 | T622C, W211R                  |
|                                   |                                 | SFTPA2 | G231V, F198S                  |
|                                   |                                 | SFTPC  | I73T, M71V, multiple others   |
|                                   |                                 | ABCA3  | S1261G, R288K                 |
|                                   | Telomere maintenance            | TERT   | L55Q, R901W, T1110M, multiple |
|                                   |                                 |        | others                        |
|                                   |                                 | TERC   | 98G>A, 37A>G, multiple others |
|                                   |                                 | TINF2  | K280E, R282H, R282S           |
|                                   |                                 | DKC1   | T405A, multiple others        |
|                                   |                                 | RTEL1  | R213W, T49M, F964L            |
|                                   |                                 | PARN   | A383V, multiple others        |



AnnalsATS. 2018; 15(3): s192-s197



•Common genetic variation may explain a substantial portion of the disease

- *MUC5B* promoter variant (rs35705950)
- The minor allele of rs35705950 is present in ~20% of European CEPH [Centre d'etude du polymorphisme humain] trios in HapMap.
- resulted in a substantial increase in the odds for disease (the minor allele of rs35705950 confirmed a >6-fold increase in the odds for sporadic IPF).



PLoS Comput Biol. 2012; 8(12):e1002822. N Engl J Med. 2011; 364(16): 1503-12. AJRCCM. 2014; 189(7): 770-8.

•Common genetic variation may explain a substantial portion of the disease

- *MUC5B* promoter variant (rs35705950)
- The minor allele of rs35705950 is present in ~20% of European CEPH [Centre d'etude du polymorphisme humain] trios in HapMap.
- resulted in a substantial increase in the odds for disease (the minor allele of rs35705950 confirmed a >6-fold increase in the odds for sporadic IPF).



PLoS Comput Biol. 2012; 8(12):e1002822. N Engl J Med. 2011; 364(16): 1503-12. AJRCCM. 2014; 189(7): 770-8.

# Genetics of Pulmonary Fibrosis

•Substantial overlap in the genetic variants predicting both sporadic and familial pulmonary fibrosis (including the *MUC5B* risk allele).

# Genetics of Pulmonary Fibrosis

•Substantial overlap in the genetic variants predicting both sporadic and familial pulmonary fibrosis (including the *MUC5B* risk allele).

•Substantial overlap in the genetic variants predicting IPF and fibrotic hypersensitivity pneumonitis (including the *MUC5B* risk allele).

# Genetics of Pulmonary Fibrosis

•Substantial overlap in the genetic variants predicting both sporadic and familial pulmonary fibrosis (including the *MUC5B* risk allele).

•Substantial overlap in the genetic variants predicting IPF and fibrotic hypersensitivity pneumonitis (including the *MUC5B* risk allele).

•The *MUC5B* risk allele is associated with rheumatoid arthritis associated interstitial lung disease.

# What are interstitial lung abnormalities (ILA)?

• Sets of chest CT imaging features suggestive of an underlying interstitial lung disease in a person without a clinical diagnosis.

#### Interstitial lung abnormalities detected incidentally on CT: a Position Paper from the Fleischner Society

Hiroto Hatabu\*, Gary M Hunninghake, Luca Richeldi, Kevin K Brown, Athol U Wells, Martine Remy-Jardin, Johny Verschakelen, Andrew G Nicholson, Mary B Beasley, David C Christiani, Raúl San José Estépar, Joon Beom Seo, Takeshi Johkoh, Nicola Sverzellati, Christopher J Ryerson, R Graham Barr, Jin Mo Goo, John H M Austin, Charles A Powell, Kyung Soo Lee, Yoshikazu Inoue, David A Lynch†

#### Lancet Respir Med 2020;

8:726-37 \*Chair and too-chair of the Fleischner Society Writing Committee for Position Paper on intentitial lung alonormalities Department of Radiology (Prof H Hatabu MD, R San José Estépar PhD), and Department of Pulmonary and Critical Care Medicine (G M Hunninghate MD), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, Unità Operativa Complesa di

BWH BRIGHAM AND

WOMEN'S HOSPITAL

The Lung Center

The term interstitial lung abnormalities refers to specific CT findings that are potentially compatible with interstitial lung disease in patients without clinical suspicion of the disease. Interstitial lung abnormalities are increasingly recognised as a common feature on CT of the lung in older individuals, occurring in 4–9% of smokers and 2–7% of non-smokers. Identification of interstitial lung abnormalities will increase with implementation of lung cancer screening, along with increased use of CT for other diagnostic purposes. These abnormalities are associated with radiological progression, increased mortality, and the risk of complications from medical interventions, such as chemotherapy and surgery. Management requires distinguishing interstitial lung abnormalities that represent clinically significant interstitial lung disease from those that are subclinical. In particular, it is important to identify the subpleural fibrotic subtype, which is more likely to progress and to be associated with mortality. This multidisciplinary Position Paper by the Fleischner Society addresses important issues regarding interstitial lung abnormalities, including standardisation of the definition and terminology; predisposing risk factors; clinical outcomes; options for initial evaluation, monitoring, and management; the role of quantitative evaluation; and future research needs.



Lancet Respir Med 2020; 8(7): 726-37. N Engl J Med. 2011; 364(10): 897-906.



# **Genetics of ILA**

Research participants with ILA in the general population are more likely to have >1 copy of the minor allele of *MUC5B* promoter genotype (rs35705950)

|                   | Number of Douticinesto           | Logistic Regression   |              |                       |              |  |  |
|-------------------|----------------------------------|-----------------------|--------------|-----------------------|--------------|--|--|
|                   | Number of Participants           | Baseline              |              | Adjusted              |              |  |  |
| ILA Definition    |                                  | Odds Ratio,<br>95% Cl | P -<br>value | Odds Ratio,<br>95% Cl | P -<br>value |  |  |
| ILA               | (177 cases vs.<br>1370 controls) | 2.3 (1.6-3.1)         | <0.001       | 2.8 (2.0-3.9)         | <0.001       |  |  |
| Definite Fibrosis | (47 cases vs.<br>1370 controls)  | 3.0 (1.8-5.0)         | <0.001       | 6.3 (3.1-12.7)        | <0.001       |  |  |

N Engl J Med. 2013; 368(23):2192-200.





# **Genetics and ILA**

BWH BRIGHAM AND

WOMEN'S HOSPITAL

The Lung Center





# Genetics and ILA

• GWA study suggests there is a substantial genetic overlap between ILA and IPF there are also important differences.

| Chromosome/ |                     |              | IPF                                           | ILA vs No ILA          |                        | Subpleural ILA vs No ILA |                        |                       |
|-------------|---------------------|--------------|-----------------------------------------------|------------------------|------------------------|--------------------------|------------------------|-----------------------|
| Location    | cation rs number Ne | Nearest Gene | Studies                                       | Odds Ratio<br>(95% Cl) | Odds Ratio<br>(95% CI) | P-Value                  | Odds Ratio<br>(95% CI) | P-Value               |
| 4q22.1      | rs2609255           | FAM13A       | Fingerlin, NG,<br>2013                        | 1.4<br>(1.3, 1.6)      | 1.18<br>(1.07, 1.3)    | 0.0005                   | 1.2<br>(1.1, 1.4)      | 3x10 <sup>-4</sup>    |
| 6p24.3      | rs2076295           | DSP          | Fingerlin, NG,<br>2013<br>Allen, LRM,<br>2017 | 1.4<br>(1.3, 1.6)      | 1.14<br>(1.05, 1.2)    | 0.001                    | 1.2<br>(1.08, 1.3)     | 3x10 <sup>-4</sup>    |
| 11p15.5     | rs35705950          | MUC5B        | Fingerlin, NG,<br>2013                        | 2.4 (2.1, 2.8)         | 2.0 (1.7, 2.2)         | 3x10 <sup>-27</sup>      | 2.2 (1.9, 2.5)         | 1.7x10 <sup>-29</sup> |
| 15q15.1     | rs2034650           | IVD          | Fingerlin, NG,<br>2013                        | 1.3<br>(1.2, 1.4)      | 1.08<br>(0.99, 1.17)   | 0.07                     | 1.15<br>(1.05, 1.3)    | 3x10 <sup>-3</sup>    |
| 19p13.3     | rs12610495          | DPP9         | Fingerlin, NG,<br>2013                        | 1.3<br>(1.2, 1.4)      | 1.14<br>(1.02, 1.3)    | 0.01                     | 1.2<br>(1.1, 1.4)      | 2x10 <sup>-4</sup>    |

BRIGHAM AND

The Lung Center

WOMEN'S HOSPITAL

BWH



Am J Respir Crit Care Med. 2019; 200(11): 1402-1413.



## Concept of Polygenic Risk



Hypertension. 2021;77:1119–1127. Inflamm Regen. 2021 Jun 17;41(1):18.



BWH







Matt Moll



Anna Peljto



John Kim





- Created PRS excluding the MUC5B genomic region (using a stacked clumping and thresholding method – LASSO)
- This no-*MUC5B* PRS included >60K variants



Matt Moll



Anna Peljto



John Kim











Matt Moll



Anna Peljto



John Kim





- There is a substantial portion of the genetic risk to develop IPF that is explained by common genetic variants outside of the *MUC5B*.
- Combined with MUC5B the no-*MUC5B* PRS is associated with an increased ability to predict the risk for IPF (AUC 0.81-0.82).
- Both MUC5B and the no-MUC5B PRS are associated with ILA and ILA progression.
- These perform less well in other racial/ethnic groups

BRIGHAM AND

The Lung Center

WOMEN'S HOSPITAL

BWH





### Clinical Genetics and Screening for Pulmonary Fibrosis

|                             | Father, die<br>History of<br>exposure                   | d age 76, smoker<br>COPD, history of silica            |                                                          | Mother, died age 80,<br>History of Alzheimer's<br>cancer | never smoker<br>s disease, breast                      |                    |    |
|-----------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------|----|
| Age                         | Age = 60                                                | Age = 64                                               | Age = 67                                                 | Age = 70                                                 | Age = 74                                               |                    |    |
| History of Smoking          | Never Smoker                                            | Former Smoker                                          | Never Smoker                                             | Never Smoker                                             | Never Smoker                                           | Lakast Cow Reduces |    |
| Diagnosis                   | ILD                                                     | ILD                                                    | ILA                                                      | IPF                                                      | ILD                                                    | 62                 |    |
| Pulmonary Function Tests    | FVC = 4.98L 109%<br>TLC = 6.52L 96%<br>DLCO = 25.57 90% | FVC = 4.10L 83%<br>TLC = 5.70L 77%<br>DLCO = 18.65 62% | FVC = 3.18L 121%<br>TLC = 4.68L 101%<br>DLCO = 18.49 92% | FVC = 1.82L 70%<br>TLC = 3.07L 66%<br>DLCO = 12.00 61%   | FVC = 2.75L 95%<br>TLC = 4.21L 80%<br>DLCO = 12.52 59% | 60                 |    |
| Chest CT image              |                                                         |                                                        |                                                          |                                                          |                                                        |                    |    |
| Lymphocyte Telomere Lengths | Lymphocytes                                             | Lymphocytes                                            | Lymphocytes                                              | Lymphocytes                                              | Lymphocytes                                            |                    | Be |
| MUC5B promoter genotype     |                                                         |                                                        |                                                          |                                                          |                                                        |                    | B  |







(R01: HL130974): now active and renewed through 2026



Mary Rice eth Israel Lahey Health 🕇 eth Israel Deaconess Needham

Am J Respir Crit Care Med. 2020; 201(10): 1240-8.





## Acknowledgments

| <u>BWH ILD Group</u><br>van Rosas<br>Rachel Putman<br>Tracy Doyle<br>Jonathan Rose<br>Hillary Goldberg<br>Souheil El-Chemaly<br>Paul Dellaripa                                                                                    | <u>BWH Radiology</u><br>Hiroto Hatabu<br>Tetsuro Araki<br>Mizuki Nishino<br>Yoshitake Yamada<br>Tomayuki Hida<br>Takuya Hino<br>Akinori Hata                                     | <u>Boston University</u><br>George O' Connor<br>Josée Dupuis<br>Marc Lenburg<br>Hanfei Xu<br>Minyi Lee                                                                                                                                                  | <u>Spiromics Cohort</u><br>Graham Barr<br>Eugene Bleecker<br>Deborah Myers<br>Victor Ortega<br>John Newell<br>Wanda O' Neal              | Baylor College of<br>Medicine<br>Ivan Rosas<br>Maria Perez<br>BIDMC<br>Mary Rice<br>Andrew Synn |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| sis Fernandez<br>Varia Planchart<br>Anthony Maeda<br>Esteban Kosak<br>Vechelle Dias<br>Claire Cutting<br>Ann Tukpah<br>Boston Children's Hospital and the<br>BWH Pulmonary Genetics Center<br>Benjamin Raby<br>Vikkola Carmichael | <u>Channing Laboratory</u><br>Ed Silverman<br>Michael Cho<br>Brian Hobbs<br>Matt Moll<br><u>BWH Quantitative Imaging</u><br>George Washko<br>Raúl San José Estépar<br>James Ross | Icelandic Heart Association<br>Vilmundur Gudnason<br>Gunnar Gudmundsson<br>Gisli Axelsson<br><u>National Jewish Health/<br/>University of Colorado</u><br>David Schwartz<br>Tasha Fingerlin<br>David Lynch<br>Anna Peljto<br>James Crapo<br>Russ Bowler | MESA Lung Cohort<br>David Lederer<br>Anna Podolanczuk<br>John Kim<br>Ani Manichaikul<br>Jennifer Nguyen<br>Jerome Rotter<br>Stephen Rich |                                                                                                 |





