

More Than Meds: Nonpharmacologic Treatments for ILD

Barry Shea, MD MGH Interstitial Lung Disease Program

May 1, 2024

Pharmacologic Treatment for ILD

Additional ILD therapies on the horizon?

Beyond FVC and survival – morbidity in ILD

- Dyspnea
- Exercise limitation / Fatigue
- Cough
- Anxiety and mood disturbances
- Quality of Life (QOL)

Treatment of IPF and other ILDs has to focus on limiting morbidity and improving QOL as much as it does on prolonging survival!

- Pulmonary rehab
- Supplemental O2
- Cough management

IPF Treatment Guidelines

		Recommendation	
Pharmacologic Therapy	For ($$) /Against (X)	Strength	Evidence quality
Anticoagulation (warfarin)	X	Strong	Low
Azathioprine + prednisone + N-acetylcysteine	X	Strong	Low
Imatinib	X	Strong	Moderate
Selective endothelin receptor antagonists	X	Strong	Low
Dual endothelin receptor antagonists	X	Conditional	Moderate
Antipulmonary hypertension therapy	X	Conditional	Very low
N-acetylcysteine monotherapy	X	Conditional	Low
Phosphodiesterase-5 inhibitor (sildenafil)	X	Conditional	Moderate
Anti-reflux therapy	X	Conditional	Very low
Pulmonary rehabilitation	\checkmark	Conditional	Low
Supplemental oxygen	\checkmark	Strong	Very low
Lung transplantation	\checkmark	Strong	Low
Nintedanib	1	Conditional	Moderate
Pirfenidone	\checkmark	Conditional	Moderate

Raghu G et al. *Am J Respir Crit Care Med*. 2011;183:788-824. Raghu G et al. *Am J Respir Crit Care Med*. 2015;192:e3-e19. Raghu G et al. Am J Respir Crit Care Med. 2022;192:e18-e47.

Pulmonary rehab improves functional capacity and reduces symptoms in ILD

Retrospective analysis 402 patients with ILD (50% IPF)

• 80% on O2, mean FVC 54%

	Admission	Discharge	Change	p-value
Lung function parameters [#]				
P_{0_2} mmHg	61 <u>+</u> 1	63 <u>+</u> 1	2 ± 1	0.012
$P_{\rm CO_2}$ mmHg	39 ± 0	40 ± 0	1 ± 0	0.002
VC % pred	54 <u>+</u> 1	55 ± 1	1 ± 0	0.002
TLC % pred	65 ± 1	65 <u>+</u> 1	0 ± 0	0.322
FEV1 % pred	55 <u>+</u> 1	56 <u>+</u> 1	1 <u>+</u> 0	< 0.001
omwi and dysphoea rating				
6MWD m	308 <u>+</u> 6	354 <u>+</u> 6	46±3	< 0.001
Dysphoea-free walk distance m	291±7	343 <u>+</u> 7	52±4	< 0.001
VAS (before exertion)	3.2 ± 0.1	3.3 <u>+</u> 0.1	0.1 ± 0.1	0.572
VAS (after exertion)	6.5+0.1	6.3+0.1	-0.2 + 0.1	0.176
Health status (SF-36) ⁺				
Physical functioning	24 <u>+</u> 1	29 <u>+</u> 1	5 <u>+</u> 1	< 0.001
Bodily pain	60 <u>+</u> 2	66 <u>+</u> 2	7 <u>+</u> 2	< 0.001
Physical role functioning	12 <u>+</u> 2	17 <u>+</u> 2	5 <u>+</u> 2	0.009
General health perceptions	29 <u>+</u> 1	33 <u>+</u> 1	4 <u>+</u> 1	< 0.001
Vitality	32 ± 1	45 <u>+</u> 1	13±1	< 0.001
Social role functioning	52 ± 2	63±2	11 ± 2	< 0.001
Emotional role functioning	49 <u>+</u> 3	56 <u>+</u> 3	7±3	0.029
General mental health	58 <u>+</u> 1	67 <u>+</u> 1	9 <u>+</u> 1	< 0.001
Physical summary score	31 <u>+</u> 1	37 <u>+</u> 1	6 <u>+</u> 1	< 0.001
Mental summary score	47 <u>+</u> 1	57 <u>+</u> 1	10±1	< 0.001

Pulmonary rehab improves functional capacity and reduces symptoms in ILD

Prospective study of 41 patients with ILD (63% IPF)

- Moderate disease (FVC 74.5%, DLCO 45.5%)
- Standardized PR course (24 sessions)

Table 2 Ou	tcome measures	with absolute	and relative	e change	following PR
------------	----------------	---------------	--------------	----------	--------------

			÷ ÷			
Outcomes	n	Before PR	Post PR	Absolute change	Relative change (%)	р
MRC	40	2.8 ± 0.8	1.7 ± 1.1	- 1.1 ± 0.8	-40.8 ± 35	<.001
SGRQ (Total)	39	50.6 ± 13.9	38.5 ± 13.7	- 12.1 ± 11.1	-23.3 ± 19	<.001
SGRQ (Activity)	39	67.6 ± 14	589 ± 19.6	- 8.8 ± 17.6	-12.5 ± 24.7	0.009
SGRQ (Impact)	39	43.7 ± 19.1	29.9 ± 15.9	- 13.7 ± 14.6	-29.9 ± 41.5	<.001
SGRO (Symptoms)	39	40.4 ± 20.9	26.7 ± 20.8	- 17 ± 19.8	-36 ± 22.1	<.001
6MWDT (m)	39	376.8 ± 94.6	430.9 ± 96.4	54.1 ± 55.4	16.7 ± 37.8	<.001
Dyspnea 6MWTD (Borg Scale)	39	5.2 ± 2.3	3.8 ± 2.2	-1.4 ± 2.1	-23.4 ± 40.1	.015
Leg fatigue 6MWTD (Borg Scale)	39	3.5 ± 2.7	2 ± 2.2	-1.6 ± 1.5	-48.1 ± 71.5	.006
Cycle dyspnea ^a (Borg scale)	40	6.1 ± 2	4.2 ± 2.7	- 1.8 ± 1.9	-33 ± 35.1	<.001
Cycle leg fatigue ^a (Borg scale)	40	5.9 ± 2.1	3.7 ± 2.7	- 2.2 ± 2	-39.5 ± 106	<.001
Cycle endurance time (min)	40	7.7 ± 3.8	12.5 ± 8.4	4.8 ± 6.9	66 ± 108.1	<.001
Cycle endurance power (watt)	40	57.5 ± 23.7	88.2 ± 57.1	31 ± 53.5	63.4 ± 33.9	.003

Tonelli et al. BMC Pulm Med. 2017.

Beneficial Effects of Pulmonary Rehab in ILD Persist at 12 Months

Perez-Bogerd S et al. Resp Res. 2018.

Pulmonary Rehab Improves 6MWD in ILD

	Pulmona	ry rehabil	itation		Control			Mean Difference	Mean Di	fference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed	, 95% CI
1.1.1 All participants										
Dale 2014	71	25.7	7	13	34.4	4	3.6%	58.00 [19.28 , 96.72]		
De Las Heras 2019	4.3	24	11	-35.2	47.4	10	5.1%	39.50 [6.88 , 72.12]		_
Dowman 2017	23	68	74	-2	69.2	68	10.6%	25.00 [2.40 , 47.60]		
He 2016	58.7	26.2	15	25.5	25.8	15	15.7%	33.20 [14.59 , 51.81]		
Holland 2008	31.2	48.6	30	-3.7	59.8	27	6.7%	34.90 [6.42 , 63.38]		e
Jackson 2014	-6.2	86.91	11	-15.3	42.89	10	1.6%	9.10 [-48.73 , 66.93]		•
Jarosch 2020	54.68	85.88	34	-3.83	38.02	17	4.7%	58.51 [24.45 , 92.57]		
Ku 2017	27	30.8	20	3.2	29.1	20	15.7%	23.80 [5.23 , 42.37]		_
Naz 2018	47	33.5	9	-22.6	75.4	9	1.9%	69.60 [15.70 , 123.50]		
Nishiyama 2008	42	50.8	13	-4	57.7	15	3.4%	46.00 [5.81 , 86.19]		_
Perez Bogerd 2018	49	80.4	30	-23	80.4	30	3.3%	72.00 [31.31 , 112.69]		
Vainshelboim 2014	70.4	77	15	-10.6	35.4	17	3.0%	81.00 [38.56 , 123.44]		
Xiao 2019	53.42	31.9	40	6.97	32.9	34	24.7%	46.45 [31.62 , 61.28]		
Subtotal (95% CI)			309			276	100.0%	40.07 [32.70, 47.44]		•
Heterogeneity: Chi ² = 1	.6.25, df = 12 ((P = 0.18);	I² = 26%							•
Test for overall effect: 2	Z = 10.66 (P <	0.00001)								
Test for subgroup differ	rences: Chi ² =	5.42, df = 3	8 (P = 0.14)), I² = 44.7%	5				-100 -50 (50 100
									Favours control	Favours pulmonary rel

Dowman L et al. Cochrane Reviews 2021.

Pulmonary Rehab Improves Dyspnea in ILD

	Pulmona	ry rehabili	itation		Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.7.1 All participants									
Dale 2014	-0.29	0.49	7	0	0.82	4	3.0%	-0.43 [-1.68 , 0.82]	
Dowman 2017	-0.2	0.9	74	0.07	0.9	68	42.7%	-0.30 [-0.63 , 0.03]	
Holland 2008	-0.57	1.36	30	0.11	0.91	27	16.6%	-0.57 [-1.10 , -0.04]	
Naz 2018	-1	0.7	9	0.2	0.7	9	3.8%	-1.63 [-2.74 , -0.53]	
Nishiyama 2008	0	1.3	13	0.4	1.5	15	8.4%	-0.28 [-1.02 , 0.47]	
Perez Bogerd 2018	0.1	0.8	30	-0.2	0.8	30	17.9%	0.37 [-0.14, 0.88]	
Vainshelboim 2014	-0.73	0.8	15	0.35	0.7	17	7.6%	-1.41 [-2.19 , -0.62]	
Subtotal (95% CI)			178			170	100.0%	-0.36 [-0.58 , -0.14]	
Heterogeneity: Chi ² = 20	0.59, df = 6 (P	= 0.002); 1	l ² = 71%						•
Test for overall effect: Z	= 3.27 (P = 0	.001)							
T . ()	C 1-2		0.000	12 00/					
Test for subgroup differe	ences: Chi ² = (0.38, dt = 3	(P = 0.94)	, 14 = 0%				_	2 1 0 1 2
								Favours	pulmonary rehab Favours control

Pulmonary Rehab Improves QOL in ILD

	Pulmona	ry rehabili	itation		Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.12.1 All participants									
Dale 2014	-6.2	14.3	7	6.4	7.3	4	1.9%	-12.60 [-25.38, 0.18]	
De Las Heras 2019	-7	14	11	-2.5	11.5	10	2.6%	-4.50 [-15.42 , 6.42]	
Dowman 2017	-4.8	11.8	74	1.1	11.9	68	20.6%	-5.90 [-9.80 , -2.00]	-
Gaunaurd 2014	-4.1	14.7	11	2.7	8.2	10	3.1%	-6.80 [-16.86, 3.26]	
Ku 2017	-8.89	3.6	20	-0.47	7.6	20	23.1%	-8.42 [-12.11 , -4.73]	-
Naz 2018	-15.4	13.2	9	-5.9	8	9	3.1%	-9.50 [-19.58, 0.58]	
Nishiyama 2008	-2.9	14.13	13	3.1	18.25	15	2.2%	-6.00 [-18.01 , 6.01]	
Perez Bogerd 2018	-7	13.4	30	6	13.4	30	6.8%	-13.00 [-19.78 , -6.22]	
Shen 2016	-9.2	13.5	16	-1.4	14.3	15	3.3%	-7.80 [-17.60 , 2.00]	
Vainshelboim 2014	-6.9	6.5	15	2.8	3.6	17	22.9%	-9.70 [-13.41 , -5.99]	+
Xiao 2019	-18.13	12.6	40	-1.02	11.6	34	10.3%	-17.11 [-22.63 , -11.59]	-
Subtotal (95% CI)			246			232	100.0%	-9.29 [-11.06 , -7.52]	•
Heterogeneity: Chi2 = 1	3.64, df = 10 (P = 0.19); I	I ² = 27%						•
Test for overall effect: Z	2 = 10.27 (P <	0.00001)							
		-							
									-50 -25 0 25 50
								Favour	s pulmonary rehab Favours control

PR has Similar Benefits in IPF and COPD

Mariahlar	W	ithin group	response to PR	Between group difference in response to			
Variables	IPF (n=113	3)	COPD (n=10)3)	Between group difference	р	
	Mean (95 % CI)	p*	Mean (95 % CI)	p*	Mean (95 % Cl)	p	
Δ ISW (metres)	53 (37 to 69)	<0.001	55 (44 to 66)	<0.001	2 (-18 to 22)	0.84	
Δ MRC	-0.7 (-0.8 to -0.5)	<0.001	-0.7 (-0.9 to -0.6)	<0.001	0.0 (-0.2 to 0.3)	0.36	
Δ CRQ Dyspnoea	4.0 (2.9 to 5.1)	<0.001	5.0 (3.7 to 6.2)	<0.001	1.0 (-0.7 to 2.6)	0.25	
Δ CRQ Fatigue	1.9 (1.0 to 2.8)	<0.001	2.2 (1.3 to 3.1)	<0.001	0.3 (-0.9 to 1.5)	0.62	
Δ CRQ Emotional Function	2.3 (1.0 to 3.5)	<0.01	3.3 (2.0 to 4.7)	<0.001	1.1 (-0.7 to 2.9)	0.24	
Δ CRQ Mastery	1.4 (0.6 to 2.2)	<0.001	2.2 (1.3 to 3.1)	<0.001	0.8 (-0.4 to 1.94	0.19	
Δ CRQ Total	9.6 (6.5 to 12.6)	<0.001	12.7 (9.2 to 16.2)	<0.001	3.2 (-1.4 to 7.7)	0.18	

Nolan CM et al. CHEST. 2021.

Hypoxemia and Supplemental O2 in ILD

59	y.	0.	F
	-	10	0 00

- FVC 96%
- DLCO 62%

	Effort #1	Effort #2
Exercise state	Rest	6min walk
Suppl O2 Flow (L/min)	0	0
Exercise distance (m)		449
SpO2 site	Finger	Finger
SpO2 (%)	97	97
Heart rate (freq/min)	89	118

55 y.o. M

- FVC 45%
- DLCO 32%

	Effort #1	Effort #2	Effort #3	Effort #4	Effort #5
Exercise state	Rest	Hall walk	Hall walk	Hall walk	Hall walk
Suppl O2 Flow (L/ min)	0	0	2	4	5
Exercise distance (m)		502	120	120	120
SpO2 site	Finger	Finger	Finger	Finger	Finger
SpO2 (%)	96	73	84	88	90
Heart rate (freq/min)	90	132	112	119	119

69 y.o.	. M
---------	-----

- FVC 71%
- DLCO 41%

Effort #1	Effort #2	Effort #3	Would he benefit
Rest	Hall walk	Hall walk	
0	0	3	from 02?
		600	
Finger	Finger	Finger	Does he need O2?
97	87	91	
74	110	112	How much O2?
	Effort #1 Rest 0 Finger 97 74	Effort #1 Effort #2 Rest Hall walk 0 0 Finger Finger 97 87 74 110	Effort #1 Effort #2 Effort #3 Rest Hall walk Hall walk 0 0 3 Finger Finger Finger 97 87 91 74 110 112

Supplemental O2 in ILD

- 2011 International Consensus Guidelines on IPF:
 - Strong recommendation (*weak evidence*) for LTOT in IPF patients with <u>resting</u> hypoxemia (SpO2 <89%; based on data from COPD)
 - *No recommendation* for or against LTOT for isolated exertional hypoxemia
- LOTT Study: supplemental O2 for COPD with exertional hypoxemia or mild resting hypoxemia (NEJM 2016)
 - No difference in long term outcomes, symptoms, or exercise capacity!
- Bell et al. *Eur Resp Rev.* 2017:
 - Meta-analysis of 12 studies of O2 supplementation in ILD (n = 4185 total)
 - LTOT (>12h/day) and "short-term" (e.g. exertional) O2 administration
 - No clear effects on dyspnea during exercise, variable effects on exercise capacity (6MWD, cycle endurance time)

Supplemental O2 in ILD

AmbOx Study: 84 patients with fibrotic ILD and isolated exertional hypoxemia

Outcome	Oxygen	Placebo Air	Difference	P value
SpO2 at end of test	90.6 (5.7)	84.7 (4.7)	5.9 (4.8 to 7.0)	<0.0001
Minimum SpO2	88.9 (4.3)	82.9 (4.4)	5.9 (4.8 to 7.1)	<0.0001
Distance walked, m	373.2 (89.9)	354.7 (97.8)	18.5 (10.9 to 26.1)	0.001
Heart rate at end of test	99.9 (14.3)	102 (18.3)	-2.2 (-4.9 to 0.6)	0.12
Maximum heart rate	104.4 (13.8)	108.9 (15)	-4.5 (-6.2 to -2.8)	0.01
SpO2 recovery time, s	117 (101)	217.7 (124)	–101 (–129 to –73)	<0.0001
Heart rate recovery time	163.7 (138.7)	191.9 (145.3)	-28.2 (-67.9 to 11.5)	0.06
Borg dyspnea score	2.1 (0.7 to 3.4)	3.0 (2.0 to 5.1)	-1.6 (-2.1 to -1.1)	<0.0001
Borg fatigue score	0.0 (0.0 to 1.4)	0.1 (0.0 to 2.6)	-0.4 (-1.1 to -0.2)	<0.0001
Borg dyspnea score recovery time, s	112 (72 to 164)	171 (114 to 229)	–49 (–99 to –1)	0.0008
Borg fatigue score recovery time, s	0 (0 to 82)	0 (0 to 174)	-14 (-64 to -0.5)	<0.0001

Data in table are expressed as mean (standard deviation) for first 7 rows and as median (interquartile range) for Borg score data; K-BILD= King's Brief Interstitial Lung Disease questionnaire. Visca D et al. *Lancet Respir Med.* 2018;6:759-770.

Barriers to O2 use in ILD

Physical/Mechanical Barriers	Psychological/Social Barriers
Equipment weight and size	Dependency
Tank duration/battery life	Emotionally constrained
Flow rate	Appearance of weakness, illness, vulnerability
Continuous vs. pulsed flow	Stigma (self-inflicted problem?)
Severity of hypoxemia	
Physically constrained	

Pragmatic Approach to O2 in ILD

Scenario	Treatment Approach
Resting SpO2 <89%	- Strong recommendation for O2
Mild exertional hypoxemia (SpO2min 86-88%)	 Self-monitoring SpO2 Trial of O2 based on symptoms PR-guided O2
Mod-severe exertional hypoxemia (SpO2min ≤85%)	- Recommend O2 with self-monitoring

2020 ATS Guidelines on home O2

- Strong recommendation for O2 Rx for severe resting hypoxemia (very low quality evidence)
- Conditional recommendation for O2 Rx for severe exertional hypoxemia (low quality evidence)
- Spot-check self-monitoring SpO2 is very helpful!
 - Rest vs. usual activities (room-to-room, stairs, etc.) vs. formal exercise
- Goal SpO2 has to be individualized and based on many factors
 - Symptoms, SpO2min and recovery time
 - Feasibility: maximum flow rate vs. tank size/battery life
 - May be a moving target as disease changes over time
 - Some is better than none!

PALLIATIVE CARE FOR ILD

Higginson et al. Lancet Resp. 2014

ILD is the Leading Indication for Lung Transplant in the U.S.

Survival after Lung Transplantation

OPTN=Organ Procurement and Transplantation Network; SRTR=Scientific Registry of Transplant Recipients.

Summary/Overview of ILD Management

Clinical Trial Consideration

Modified from: Raghu G et al. Am J Respir Crit Care Med. 2022;192:e18-e47.

